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We study memory effects in a kinetic roughening model. For d=1, a different dynamic scaling is uncovered
in the memory dominated phases; the Kardar-Parisi-Zhang scaling is restored in the absence of noise. dc=2
represents the critical dimension where memory is shown to smoothen the roughening front ���0�. Studies on
a discrete atomistic model in the same universality class reconfirm the analytical results in the large time limit,
while a different scaling behavior shows up for t��, with � being the memory characteristic of the atomistic
model. Results can be generalized for other nonconservative systems.

DOI: 10.1103/PhysRevE.80.011144 PACS number�s�: 64.60.Ht, 68.35.Rh, 05.40.�a

I. INTRODUCTION

Memory effects in intrinsically nonlinear diffusive dy-
namics �1� have been the subject of much speculation and
excitement in recent years �2–12�. This has been partly due
to the fact that along with dimensionality and associated
symmetries �9–14�, memory, or equivalently time delay, has
now been shown to have a highly nontrivial effect both in
experimental �5–8� as well as in theoretical situations
�9–12,15�. Whether it be the spatial correlations �6,8,10,11�
or otherwise the temporal correlations �16–19�, long-ranged
�LR� spatiotemporal correlations are expected to contribute
to the universality class of a nonequilibrium system �14� and
affect experimental measurements.

Theoretical modeling of interface dynamics incorporating
nonlocal interactions was initiated in a seminal work by
Mukherji and Bhattacharjee �12�. The central premise was a
generalization of the Kardar-Parisi-Zhang �KPZ� nonlinear-
ity in �1� to its nonlocal equivalent through a site:site cou-
pling of gradients, thereby connecting lateral motions be-
tween far-off sites �identical in spirit to the nonlocal
Liouville equation studied in �13��. Later attempts
�11,13,15,20–22� generally retained the origin of the nonlin-
ear LR term while incorporating modifications as demanded
by the experimental, e.g., sputtering �10� or physical, e.g.,
correlated noise spectrum �11,13,15,20,21� situations. What
all these studies have done is to confirm once and for all that
LR spatial interactions do change the roughness exponent
which could now be favorably compared to experimental
observations �23�. In all such attempts, though, the attention
was restricted to the spatial correlations only without attach-
ing much importance whatsoever on the LR nature of tem-
poral fluctuations. As recent biologically motivated studies
�18,19� show, this could be a major loophole in the analysis
since temporal correlations of fluctuating fronts could have a
marked impact on the spatiotemporal probability distribution
of the dynamical process. This paper is intended to plug this
gap by studying the role of memory related temporal fluc-
tuations in stochastic growth models.

The preliminary question that we address here is the fol-
lowing: what happens if a perturbation at some arbitrary time

t0 at site x� affects the dynamics of the same site x� at some
later time t? To address this problem, we start with a dynamic
renormalization group �DRG� study of a continuum model
that incorporates the effects of memory. This analytical pre-
scription is complemented by a study of two independent
discrete models: one using a Langevin simulation of the con-
tinuum model and the other from a discrete atomistic model
with appropriate growth rules. As is later shown, the discrete
model belongs to the same universality class as the con-
tinuum model in the equilibrium limit �t→ large�, whereas
for times t��, with � being the delay time associated with
the atomistic model �details to follow�, an entirely different
scaling regime exists that is independent of the specific value
of �.

The paper is organized as follows. In the first section, we
define the continuum model used to study a memory-
dependent dynamical equation of motion. In the next section,
a detailed derivation of the method and eventual results of
the renormalization group �RG� solution of the equation of
motion follows. The section immediately following the RG
analysis is a complementary theoretical derivation of the RG
scaling results �comparison is restricted to qualitative levels�
using the self-consistent mode coupling �SCMC� method.
The following section deals with numerical studies of the
discretized continuum equation and an independent atomistic
simulation incorporating an externally impressed time delay.

II. CONTINUUM MODEL IN THE PRESENCE OF A
MEMORY TERM

We define our model using the prescription of �11,12�.
However, instead of a site:site interaction at the same time
instant t, in this model, the fluctuation at a site x� at time t
interacts with the fluctuation of the same site at some other
time t+ t� �t��0�. The consequent equation of motion reads

�h

�t
�x�,t� = ��2h�x�,t� +

1

2
�

0

t

dt�v�t���� h�x�,t + t�� · �� h�x�,t − t��

+ ��x�,t� , �1�

where � is the kinematic viscosity and � is a white noise
defined through the relation ���x� , t���x�� , t���=2D��x�
−x�����t− t��. The memory kernel v�t� is power-law corre-*achattop@physics.du.ac.in
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lated and is defined through the relation v�t�=	0��t�
+	
t
−1. For 	
=0, conventional KPZ dynamics follows,
while for all other values of 	
�0�
�1�, the system has a
non-negligible memory. As we would shortly find, the infra-
red regime ��→0� is the one of interest and decides the
magnitude of temporal correlations in deciding the non-KPZ-
type universality class of the system, especially for d=1.

III. RENORMALIZATION GROUP ANALYSIS INCLUDING
“MEMORY”: CRITICAL EXPONENTS

To study this model, we use simple scaling hypothesis
followed by momentum renormalization in the mold of
�9,10,12�. A self-similar scaling of the model gives x�→bx�,
t→bzt, and h→b�h �where � and z are the roughness and
dynamic exponents, respectively�. This yields �→�bz−2, 	0
→bz+�−2	0, 	
→b�+�
+1�z−2	
, and D→bz−d−2�D. For all
nonzero values of 	
, the attractor flows over to a non-KPZ
fixed point and the Galilean relation ��+z=2� of a standard
KPZ model is also modified, the latter now becoming 
 de-
pendent. The renormalization technique involves the consid-
eration of a momentum shell between the wave vectors k� and
k� +dk� for the frequency � and then integrating out the fast
modes between �e−l� �q� ���. At the one-loop level, the
flow equations are given by

d�

dl
= 	z − 2 − Kd

ṽ�2�ṽ�1�D
�3

d − 2

4d

� ,

d	0

dl
= �� + z − 2�	0,

d	


dl
= �� + z�1 + 
� − 2�	
,

dD

dl
= �z − d − 2��D +

D2Kd

4�3 ṽ2�2� , �2�

where Kd=Sd / �2�d �Sd is the surface of the d-dimensional
hypersphere�, ṽ���=	0+	
�−
, and �=1 without any loss
of generality. Due to Galilean invariance, 	0 is not renormal-
ized at any perturbative order. In terms of the nondimen-

sional interaction strengths Ux
2=

D	x
2Kd

�3 �x=0&
�, we get

dU0

dl
= �2 − d

2
�U0 + �2d − 3

4d
�U0

3 +
U0U


8d
�a0U0 + a1U
� .

�3�

In the above, a0= �5d−6��1+2−
�−2d and a1=2−
��3
+2−
�d−6�. This gives

dR

dl
= − z
R , �4�

where R=
U0

U

. The previous equation suggests that there are

no off-axis fixed points in the �U0 ,U
� parameter space ex-
cept at the trivial fixed point 
=0 �KPZ fixed point�. There
are only two sets of axial fixed points, the short-ranged one,

U0
�2= 2d�d−2�

2d−3 , U

�2=0 ��+z=2; KPZ fixed point�, and the

long-ranged non-KPZ fixed point, U0
�2=0, U


�2= 4d�d−2−2z
�
a1

. It
might be noted that our phase diagram has a comparable
structure to that of the one in �12�. The quantitative differ-
ence, though, lies in the nature of self-consistent evaluation
of the dynamic exponent z �or roughness exponent �� as a
function of the memory parameter 
 and the spatial dimen-
sion d of the system. This is evident from the following
expressions that we derive from the flow equations:

z = 2 +
�d − 2 − 2z
��d − 2 − 3z
�

2
a1
,

� = 2 − z�1 + 
� , �5�

giving

6
2z2 − �5�d − 2�
 + 2
a1�z + ��d − 2�2 + 2
+1a1� = 0. �6�

The equation above can be used to solve for z and �.
Additionally, we impose the logical constraints that the dy-
namic exponent z should be real and positive thereby gener-
ating the z ,� vs 
 phase diagrams �Fig. 1�. Such outcomes,
when contrasted with �24�, clearly shows that memory has a
nontrivial effect on the nonequilibrium dynamics, while
when compared with �9�, it becomes clear that the contribu-
tion from delay is quantitatively very unlike that of a spa-
tiotemporal correlation in the noise spectrum. One might,
however, argue of a qualitative resemblance between the two
�25� in the sense that in either case, the dynamic exponent z
always decreases as a function of the external parameter 

�where 
 is the exponent defining the temporal correlation in
�25� while it defines the strength of the memory kernel in our
case�; while the roughness exponent � increases with it. The
quantitative difference lies in the convexity property of the z
versus 
 plots �or equivalently the concavity of the � vs 

plot� in each case.
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FIG. 1. �Color online� Phase diagrams for d=1. The outset rep-
resents z vs 
; the solid line represents the RG result calculated
using Eq. �6� while the dotted-dashed line represents the SCMC
result calculated from Eq. �10a�. The inset shows the RG result for
� plotted against 
.
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For d=1, we get a series of non-KPZ fixed points, as
shown in Fig. 1, the KPZ phase being restored at 
=0. The
outset of this figure represents the z versus 
 results while the
inset shows the results for � plotted against 
. It might be
noted that for values of 
�0.39 the system enters a super-
rough phase �26–28� ���1�. Although such a behavior gen-
erally implies a break down of the self-affine hypothesis
�29�, as already shown in numerous theoretical �26� and nu-
merical �28� studies, this is defined as anomalous scaling.
Studies done on a wide range of kinetic growth processes,
including crack propagation, Hele-Shaw flow with quenched
disorder, spontaneous imbibition, etc., prove without doubt
that such a scaling is very physical and is related to the mean
local slope of the interface defined through the nonlinear
term in the growth process �27�. In the model of our study,
we find a consummate proof of this scaling in that the lateral
nonlinear term, representing the memory contribution, domi-
nates the scaling process as is evident by the existence of
such a strongly disordered phase.

The criticality of the system for d=2 is interesting. In the
absence of the memory term �
=0�, the trajectories flow
over to an unique Edwards-Wilkinson �23� fixed point but no
stable fixed point exists once the memory is switched on.
Clearly dc=2 represents a critical dimension indicating a
crossover from a smooth to a rough phase on either side of
dc, a result that is validated also from the self-consistent
mode coupling analysis detailed in the following section.

IV. SELF-CONSISTENT MODE COUPLING

In order to cross check the non-KPZ effects qualitatively,
we use the SCMC theory as in �11�. The starting point is the
Dyson equation G−1�k� ,��=−i�+�k2+��k� ,�� which, to-
gether with the self-consistent scheme, gives for the self-
energy

��k�,�� = −� ddk

�2�d

d��

2
�p� · k���p� · �k� − p���G�k� − p� ,� − ���

� C�p� ,����v����2. �7�

The correlation function at an equivalent order is given by

C�k�,�� = �G�k�,���2� ddk

�2�d

d��

2
p�2�k� − p��2�v����2

�C�k� − p� ,� − ���C�p� ,��� �8�

One can now use the following scaling ansatz for ��k� ,��
and C�k� ,��:

��k�,�� = kzf� �

�k��z
� , �9a�

C�k�,�� = k−�d+2�+z�g� �

�k��z
� . �9b�

In the infrared limit, we can now combine Eqs. �7� and
�9b� and use the self-consistent power counting scheme �11�
to get the following values for the exponents:

z =
2 + d

2�1 + 
�
, �10a�

� =
2 − d

2
. �10b�

It might be noted that the above analysis validates the
more detailed RG results at a qualitative level. The dynamic
exponent z as a function of 
 has the same concavity in its
structure, although the roughness exponent remains indepen-
dent of 
 which is a marked difference from the RG result.
This should be evident from Fig. 1 where the dynamic expo-
nent z, derived independently from dynamic renormalization
group and mode coupling theory, are contrasted against each
other �outset of the figure�. The other agreement is on the
value of the critical dimension, defined through the identity
�=0, which, as in the RG case, shows dc=2.

V. DISCRETE GROWTH MODEL, INCLUDING MEMORY

To check the strength and consistency of the previous
analytical arguments �especially in view of claims to fallibil-
ity of DRG arguments in nonlocal KPZ analyses �22�� and
possibly more, we now resort to two independent numerical
frameworks. The first method involves the simulation of the
Langevin equation �Eq. �1��, while the other is our proposal
for a different atomistic model that shows the existence of
multiple phases with an externally impressed delay as the
order parameter. For time periods less than a critical value of
the delay time �, the atomistic model shows a non-KPZ
phase while for larger times t��, the flows converge to a
KPZ attractor. The details are shown in Fig. 2. What this
essentially means is that the t�� regime signifies the station-
arity limit of the discrete model which has a marked differ-
ence to the roughening observed for smaller values of time
t��. The idea, here, is to impress the fact that delay or
memory act as a nontrivial perturbation in non-Markovian
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FIG. 2. �Color online� Atomistic simulation for t�� shows a
dynamic scaling 	0.75 that crosses over to the continuum scaling
behavior 	0.33 in the stationarity limit. Results for �=5 and 10
confirms that scaling results in both temporal regimes are indepen-
dent of the actual values of �.
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systems. We should add that the latter atomistic model is to
be considered as a complementary example of memory-
influenced statistics and not as a discrete equivalent of the
coarse-grained continuum model defined in Eq. �1�.

In the Langevin simulation, we use nondimensionalized
units throughout and a typical Gaussian white noise of low
strength. The discretization follows a finite-difference
scheme accurate up to order O(��x�2). The results, in 1+1
dimensions, generally agree with the renormalization group
results as depicted in Fig. 1 in that the growth exponents 	
�defined later� increase as the values of 
 increase. The re-
sults, though, are only a qualitative match with the RG re-
sults, where the former results are in the long-time limit.

In the following, we discuss the algorithm of the discrete
atomistic model. The model is a derivative of the restricted
solid-on-solid model due to Kim and Kosterlitz �30�. We
define the simple-to-follow growth rule in one dimension. A
particle is dropped at site i only if the nearest-neighbor
height differences are less than a preassigned whole number.
This means hi→hi+1 only if �hi−hi−1��N or �hi+1−hi��N,
with N �=1 in our simulation� being a whole number that can
have values 1, 2, 3, etc. However, such a growth rule defines
a simple KPZ universality class. In order to incorporate “de-
lay” or memory in the system, we impose the additional
condition; a site i cannot accept the next particle until delay
time � has elapsed and after this time a particle is allowed to
stick at location i only if �hi�1−hi��N. This essentially
amounts to throwing away a particle if it falls on a site
within time � of the site having accepted a previous particle.
This is not a problem though, since number conservation of
particles is not an intrinsic symmetry of the basic Kardar-
Parisi-Zhang model. One can now control the value of this
externally impressed delay time � and study the second spa-
tiotemporal moments, as shown in Fig. 2.

In Fig. 2, we show scaling results for the atomistic simu-
lation data in a log-log plot where the temporal width w�t�
= ��h�x , t�+ t�−h�x , t���2� is plotted against time t using non-
dimensionalized units. The result shows two different scaling
zones in 1+1 dimensions. For t��, the growth exponent 	
3 /4 while for t��, there is a crossover to the KPZ uni-
versality class �	0.33�. The non-KPZ scaling for t�� ap-
pears to be a specific property of the discrete model that does
not have a continuum analog. The convergence to the KPZ
universality class in the large time limit can nevertheless be
understood through a comparison with the continuum model
defined in Eq. �1�. The initial long-range memory at any site
i where a particle has been dropped will decay as a power
law as the dynamics is evolved and more and more particles
are rejected at site i within the time interval �. In fact, this
also explains our choice of a power-law memory kernel in
the coarse-grained model instead of an infinite-ranged tem-
poral spectrum �an exponential function would have done
that�. An interesting study in connection could be an attempt
at a self-consistent modeling of the discrete atomistic and
coarse-grained continuum model capable of explaining the

relation between the external perturbations: the delay time �
and the memory index 
.

Before concluding this section, we would like to point out
that the atomistic model considered here is to be viewed in a
different light. It is similar in spirit to the continuum descrip-
tion �and discretized version of the same: the Langevin simu-
lation�, such that the presence of delay heralds the existence
of multiple universality classes, although for large scale,
large time limits delay does not change the universality class
for the discrete model so long as t��. Having said that, it
might be noted in Fig. 2 that the value of the delay ��103

time steps �taking �t=0.1� which is a considerably large
number. Hence for most practical purposes, the delay time �
is a large enough number for the system to show the exis-
tence of two separate phases. The 	3 /4 is therefore not a
transient phase. In other words, delay is very much a relevant
perturbation in such nonlinear stochastic models.

VI. CONCLUSIONS

To summarize, we have proposed a model of kinetic
roughening that takes into account the presence of memory
in the system. Using complementary results from renormal-
ization, self-consistent mode coupling, and Langevin simula-
tion, we make an important conclusion; the nature of pertur-
bation generated by the presence of memory in a nonlinear
system has a marked quantitative difference to that gener-
ated by other external perturbations, including that of a tem-
porally colored noise. For d=1, the presence of memory
contributes to producing a huge set of non-KPZ-type fixed
points while for d=2, the only stable phase is the Edwards-
Wilkinson phase. Results from the continuum model are
complemented by simulation results from a proposed dis-
crete atomistic model which has an external delay imposed
on an otherwise KPZ-type growth rule. We find that for sys-
tems with large relaxation times �� large�, the usual KPZ
universality class is restored, as is to be expected. However,
for small enough delay times ���

	


	0
�1/�1−
��, the system

shows a unique crossover to a non-KPZ phase defined by a
growth exponent 3 /4. The memory dominated non-KPZ
phase seems to indicate the presence of intermittency in the
energy spectrum as could easily be tested from a dimensional
analysis. What is most reassuring, though, is the fact that the
crossover value of the delay time � does not affect the scal-
ing behavior in either limit, thereby confirming the univer-
sality aspect of this atomistic model. Irrespective of the na-
ture of its nonlinearity, we expect other memory-dependent
nonequilibrium models to show similar behaviors as long as
the dynamics remains nonconservative.
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